

Abstract—This research developed an

application that could tracks and locates human’s

presence and position in indoor environment using

multiple depth-cameras. Kinect as the most

affordable device that equipped with depth-

camera was used in this work. The application

obtains stream data from Kinect and analyzes

presence of human using skeletal tracking library

on Kinect for Windows SDK v1. The final

application also visualizes human location on 3D

environment using Windows Presentation

Foundation (WPF) 4.0. In order to visualize 3D

object correctly, the application also took into

account the coverage that may intersect when two

Kinects were placed in adjacent position so that

the final human location is combined. In the end,

application was tested in 3 different scenarios and

it’s found that the average error in determining

human location was 0.13589 meters.

I. INTRODUCTION

N this modern era, the needs of indoor human

tracking application, an application that could

tracks and locates human’s position in indoor

environment, are increasing. Some of the needs are

(1) to monitor elderly people’s condition when the

family was not with them, (2) to develop security

system, (3) to make context-aware application, an

application that can adapts changing condition and

environment, for example household automation and

interactive environment, and (4) to create

rehabilitation games for recovery of lost motor

functions.

Some researches associated with indoor human

tracking application have ever been done before, but it

had some drawbacks. First, human had to use

troublesome wearable device, such as cricket [1] and

active badge [2]. Second, some researchers used

computer vision technology to track human utilizing

RGB camera [3],[4]. In some cases including

monitoring elderly people, utilizing RGB camera was

not expected because it could be considered as

invasion of privacy. Third, the installation of the

system was still too expensive because it used

extremely large device, such as active floor [5] or

pressure-sensitive floor (EMFi floor) [6].

As a solution, depth-camera could be used to track

and locate human’s position in indoor environment

without the needs of using wearable device and

utilizing RGB camera. One of the most widely used

devices that equipped with depth-camera was Kinect,

an additional device for Xbox 360 launched by

Microsoft for less than £100 per unit [7]. Using

inexpensive depth-camera as Kinect, it is possible to

develop indoor human tracking application that could

eliminate three flaws in previous research.

Nevertheless, Kinect also has a drawback. It has a

very limited coverage because it was designed for

indoor gaming device. Kinect could only detect

human at distance 0.8 – 4 meters with 57
0
 horizontal

field of view (approximately 8.3 m
2
) [8]. Therefore,

this research was conducted to develop an indoor

human tracking application by using multiple Kinects

so that the coverage limitation of using one Kinect

can be resolved. In this research, the number of

Kinect to be used was two. Some researches focus on

human detection method using depth image have ever

been carried out before, as has been done by [9].

Instead of developing new method for detecting

human on depth image, this research focuses on

developing potential useful application using existing

method and improve the capabilities using multiple

devices.

The application obtains stream data from Kinect

using official Software Development Kit (SDK) from

Microsoft called Kinect for Windows SDK v1. With

those data, application could tracks and locates

human’s position relative from Kinect and visualizes

it in 3D environment using Windows Presentation

Foundation (WPF) 4.0. The 3D model itself was

created using Blender 3D Computer Graphics 2.48a.

Application also took into account the coverage that

may intersect when two Kinects were placed in

adjacent position so that the final human location

inside that place is combined. Finally, the application

was tested with three different scenarios to find out

error from the process of detecting human location.

Indoor Human Tracking Application Using Multiple

Depth-Cameras

Muhamad Risqi Utama Saputra, Widyawan, Guntur Dharma Putra, Paulus Insap Santosa

Department of Electrical Engineering and Information Technology, Universitas Gadjah Mada

Grafika No. 2 Yogyakarta, 55281, Indonesia

risqi@te.gadjahmada.edu, widyawan@ugm.ac.id, guntur.dharma@mail.ugm.ac.id,

insap@mti.ugm.ac.id

I

II. LITERATURE REVIEW

A. Depth-camera

Depth-camera is a device that can directly senses

range to nearest physical surface at each pixel

location. Depth-camera is unique because it could

enables affordable real time 3D modeling of surface

geometry and makes some difficult computer vision

problems easier, such as removing false background

in a video conference application [10]. Some of

technologies used to obtain depth information from

depth-camera are time-of-flight infrared and

structured light [11].

B. Kinect

Kinect is a motion sensing device by Microsoft that

enables users to control and naturally interact with

games or other programs without the need to

physically touch with controller. Kinect performs this

through natural user interface technologies by

tracking user’s body movement, gestures, and spoken

commands. As shown in Fig. 1, Kinect consists of 3D

depth sensor (using an infrared projector and an

infrared camera), RGB (Red-Green-Blue) camera,

multi-array microphones, and a motor for tilting

mechanism. Depth sensor interprets depth information

from projection of infrared emitted by infrared

projector. Multi-array microphones contribute on

speech recognition and localization based on beam

angel of sound. Kinect also uses accelerometer to

detect tilt and stabilize image [7].

Fig. 1. The main parts of Kinect are 3D depth sensor, RGB

camera, motorized tilt, and multi-array microphone.

To measure depth information, the inventors

described that it was used triangulation method.

Infrared projector emits randomly speckles pattern of

infrared and it is captured back by infrared camera.

The captured pattern is correlated against a reference

pattern afterward. The reference pattern itself is

obtained by capturing a plane at a known distance

from sensor and is stored in a memory. When a

speckle is projected on an object whose distance to

the sensor is smaller or larger than the reference

plane, the position of speckle in infrared image will be

shifted in the direction of the baseline between the

infrared projector and infrared camera. These shifts

are measured using image correlation algorithm which

yields a disparity image. With this disparity image,

the distance information in every pixel can be

retrieved using triangulation formula [12].

C. Kinect for Windows SDK v1

Kinect for Windows SDK is a tool and Application

Programming Interface (API) which helps developer

to create Kinect enabling application on Windows

operating system, whether it uses native code (C++)

or managed code (C# or Vb .NET). Kinect for

Windows SDK provides library to consume stream

data from Kinect, such as images data, audio input,

and skeletal data. There are 3 images data provided by

Kinect for Windows SDK. They are color image data,

depth image data, and player segmentation data. Color

image data generates image as appears on RGB

camera. Depth image data provides frames which

every pixel contains distance in millimeters (mm)

from camera to nearest object on x and y coordinates

in Kinect field of view. Whereas player segmentation

data processes stream data to identify up to 6 humans

in front of Kinect and creates segmentation map. This

segmentation map is a bitmap, which every pixel

indicates player index from nearest detected human

[8].

Moreover, Kinect for Windows SDK also have

Natural User Interface (NUI) API feature called

skeletal tracking. Skeletal tracking provides skeleton

information and position of human in front of Kinect.

There are two kind of skeletal tracking, i.e. active

skeletal tracking and passive skeletal tracking. Active

skeletal tracking provides full skeleton data (skeleton

joints and human’s location), whereas passive skeletal

tracking provides only location of human. The

position of skeleton and each of the skeleton joints are

stored as (X, Y, Z) coordinates. Skeleton space

coordinates are expressed in meters. The (X, Y, Z)

axes are the body axes of the depth sensor as shown in

Fig. 2 [8].

Fig. 2. Coordinates space of skeleton data provided by Kinect for
Windows SDK [8].

III. ARCHITECTURE DESIGN

The architecture of indoor human tracking

application is divided into 3 main layers as shown in

Fig. 3. They are hardware, Kinect SDK, and

application. First, hardware layer shows that each

Kinect has to be connected with different USB

controller bus because of large bandwidth usage. One

USB controller bus can’t handle 2 incoming stream

data from 2 Kinects, especially depth data. Then,

Kinect SDK layer consists of Kinect drivers and

Natural User Interface (NUI) library which is

provided by Kinect for Windows SDK. This is a

bridge between hardware layer and application layer

that provides depth data and skeletal tracking data

which is used later by Application layer.

Application layer is the main layer that completely

developed by this research. This layer describes that

indoor human tracking application is divided into 3

sub applications. It was done because to track and

retrieve human’s location, application uses skeletal

tracking data from Kinect for Windows SDK which

work only on 1 process or 1 application. Those 3 sub

applications are 2 client applications for accessing

skeletal tracking data from each Kinect and 1 server

application that obtains those data, processes it, and

visualizes it in 3D environment.

Fig. 3. It’s architecture of indoor human tracking application. It’s

divided into 3 main layers: hardware, Kinect SDK, and application.

IV. IMPLEMENTATION

A. System Requirements

For the purpose of development and testing, the

application needs:

1. Hardware

a. Kinect for Xbox 360 (2 devices).

b. A computer with minimum 2 GHz processor,

2 GB RAM, 30 GB hard disk space, and

DirectX 9 graphic device with WDDM 1.0.

c. Express card to USB 2.0/USB 3.0.

2. Software

a. Windows 7 Basic Edition operating system.

b. Microsoft Visual C# 2010 Express.

c. Blender 3D Computer Graphic 2.48a.

d. Kinect for Windows SDK v1.

e. XAML Exporter for Blender.

B. Kinect Placement

In order to visualize human location correctly in 3D

environment, user should place two Kinects in the

right position. To ease user on Kinect placement,

application provides Kinect placement template. The

template is two Kinects should be placed parallel each

other and the coverage should be in same direction as

shown in Fig. 4. Fig. 4 also describes the distance of

two Kinects is 5 meters. It is just initial distance

which is created to ease placement of 3D object that

represents Kinect in application’s 3D environment.

User can change distance, move the Kinect right-left

or front-back as desired.

Fig. 4. This is Kinect placement template which is provided by

application. User should place two Kinects parallel each other and
each coverage area should be in the same direction.

C. User Interaction

The user of indoor human tracking application can

adjust the setting of application before it’s used to

track human. This is the list of tasks which user can

do (see Fig. 5 for to view user interface):

1. Import 3D indoor environment object, a 3D

object that represents real indoor environment

such as family room, laboratory, etc. The format

of 3D object is XAML. User can create this

object using Blender and export it to XAML file

using XAML Exporter for Blender.

2. Move 3D indoor environment object to desirable

specific coordinate in 3D coordinates system.

3. Identify each Kinect, which one is connected to

client application 1, which one is connected to

client application 2. It can be done by entering

Kinect ID in each client applications.

4. Choose Kinect placement template and place 3D

Kinect object on 3D environment.

5. Move 3D Kinect object to specific coordinate in

3D coordinates system. It is tailored with the

need of user and Kinect placement in actual

condition.

Fig. 5 On server application, user can (1) imports 3D indoor

environment object, (2) moves it to desirable coordinates, (3)

identifies each Kinect, (4) chooses Kinect placement template, and
(5) moves 3D Kinect object to specific coordinates.

D. Tracking Process and Communication between

Client and Server

The process of tracking human location begins with

initializing Kinect’s connectivity and prepares depth

frames by client application, including setup frame

resolution. For every incoming frame, application puts

every transferred byte to buffer memory. Then,

application converts each byte to monochrome for

displaying it on monitor, with closer depth

information will be colored white, while farther depth

information will be colored black. By using player

segmentation data on Kinect SDK, application

enables to detect the presence of human in every

frame and marks the pixels with gold color. Finally,

using skeletal tracking feature on Kinect SDK, each

client application retrieves human’s location in x, y,

and z coordinates, accord with Kinect’s skeleton

space.

For purpose of displaying human location in 3D

environment, client application should transfer

information about human’s location to server

application. Communication between client

application and server application is carried out using

shared-memory feature on Windows OS, which is

called Pipes. First, server application should initiates

pipes server, opens the connection, and waits for

incoming data. Then, when client application is

running, it automatically initiates pipes client and

sends data to server application. If the data has been

delivered successfully, server application closes the

connection and prepares for the next communication.

In order to achieve understanding communication

between client application and server application, the

data exchange format should be defined clearly. This

application is used string as type of data exchange.

The format is:

“KinectUniqueID AppNumber DetectedStatus X Y Z”

The explanations of data exchange format above are:

1. KinectUniqueID: ID of Kinect. Every Kinects has

different ID.

2. AppNumber: Identity number of client

application which sends the data. The value is 1

or 2. It’s useful to visualize 3D Kinect object.

3. DetectedStatus: the value is DETECTED when

application detects presence of human.

4. X: Location of detected human in X axis based

on skeleton space coordinates.

5. Y: Location of detected human in Y axis based

on skeleton space coordinates.

6. Z: Location of detected human in Z axis based on

skeleton space coordinates.

E. Calculation of Human Location in Intersection

of Two Coverage Kinects

The first step to calculate detected human’s location

on intersection of two coverage Kinects is to detect

whether the human is present on that area or not. This

is done simply by checking incoming data from two

client applications. If two client applications send

skeletal tracking data on the same time (the value of

DetectedStatus property is assigned with

“DETECTED”), it means the human is present on

intersection area. Then, the calculation itself is done

by finding the middle point between two incoming

location values from two client applications. It’s done

by computing average value of two human locations

with location from Kinect 1 as reference point. Here

details of the process:

1. Calculate distance placement (x and y) of two

Kinects object in 3D environment.

2. Determine the position of two Kinects based on

Kinect object’s coordinate in 3D environment.

3. Convert distance placement of two Kinect (x and

y) to units of meter.

4. Calculate final human location based on the (1)

human position and (2) Kinect’s position. Table 1

shows all of formulas used to calculate final

human location based on those conditions.

Table 1

Calculation Of Final Human Location Based On Human Position

And Kinect Position

Final calculation of X coordinate

Human’s position is on the left side of two Kinects

(each value of detection result is positive)

Kinect 1 is on

the left of

Kinect 2

(XKinect1 is less

than XKinect2)

Kinect 1 is on

the right of

Kinect 2

(XKinect1 is

greater than

XKinect2)

Human’s position is on the middle of two Kinects

(one value of detection result is positive, the other is negative)

Kinect 1 is on

the left of

Kinect 2

(XKinect1 is

negative and

XKinect2 is

positive)

Kinect 1 is on

the right of

Kinect 2

(XKinect1 is

positive,

XKinect2 is

negative)

Human’s position is on the right side of two Kinects

(each value of detection result is negative)

Kinect 1 is on

the left of

Kinect 2

(|XKinect1| is

greater than

|XKinect2|)

Kinect 1 is on

the right of

Kinect 2

(|XKinect1| is

less than

|XKinect2|)

Final calculation of Z coordinate

Kinect 1 is in

front of Kinect 2
Kinect 1 is

behind Kinect 2

F. 3D Visualization

Visualization of tracking human’s location in 3D

environment is carried out based on final human

location data. The final human location data should be

converted into 3D coordinate values based on the

scale used by application. Then, those values are

summed with coordinate position of object that

represents two Kinect devices in a 3D system. Finally,

using the final coordinate values, 3D object that

represents humans is displayed on the screen. Fig. 6

shows the final results of 3D visualization.

Fig. 6. Final human location is visualized in 3D environment.

V. EXPERIMENTAL RESULT

Experiment was conducted with 3 different

scenarios to get the average error from detection

human location process. Scenario 1, two Kinects were

placed in parallel right-left with 5 meters distance and

there is no intersection coverage. This condition is

suitable for human tracking implemented in a wide

space, such as laboratory or stage presentation.

Scenario 2, two Kinects were placed parallel with 1

meter distance and of course there is intersection area.

This condition is suitable for the implementation of

human tracking in a narrow space like the family

room or the patient room. Scenario 3, two Kinects

were placed front-back with 1.5 meters distance and

there is intersection area. This condition is suitable for

the implementation of human tracking in building

hallways. Fig. 7 shows illustration of three scenarios

above.

Fig. 7. Three different scenarios for experiment: 1) two Kinects are

placed parallel right-left with 5 meter distance, 2) two Kinect are
placed parallel right-left with 1 meter distance, and 3) two Kinect

are placed front-back with 1.5 meter distance.

Table 2 shows error of detection human location from

every scenario. Based on result in three different

scenarios, average error of this indoor human tracking

application is 0.13589 meter.

TABLE 2

ERROR CALCULATION OF HUMAN LOCATION FOR EVERY

SCENARIO (METER)
Scena

rio

Kinect 1 Kinect 2 Calculation of human

location in

intersection area

Mean Standard

deviation

Mean Standard

deviation

Mean Standard

deviation

1 0.11689 0.0217 0.11937 0.01993 - -

2 0.10223 0.04797 0.10654 0.05083 0.1073 0.03829

3 0.18607 0.08795 0.14729 0.07004 0.2014 0.0335

Fig. 8, Fig. 9, and Fig. 10 show error for every

scenario in chart bar. From those three charts, it’s

known that standard deviation of error is wider on

scenario that has intersection area, that is Scenario 2

and 3. This is happened because infrared spackle from

two Kinects overlapped each other so that it’s difficult

for Kinect’s processing machine to determine which

one infrared spackle to be calculated. Furthermore,

the highest average error is on Scenario 3. This is

happened because every projected infrared spackle

from two Kinects on Scenario 3 is overlapped each

other.

Fig. 8. Average error detection of human location in scenario 1.

Fig. 9. Average error detection of human location in scenario 2.

Fig. 10. Average error detection of human location in scenario 3.

Fig. 11 shows error pattern on Z and X coordinate

against shift of measurement in actual condition.

From the graph, it’s shown that error of detection

human location in Z coordinate changes linearly with

shift of human in real condition. This means that error

of detection human location in Z coordinates change

proportionally against shift of measurement in real

condition. If distance of human from Kinect in Z

coordinates more far away, then the error of detection

human location is bigger. But, it’s not happened with

error of detection human location in X coordinate.

Error on X coordinate is not makes any particular

pattern and not leveraged by shift of measurement in

real condition.

Fig. 11. The pattern error of detection human location in X and Z
coordinates compared to actual condition.

VI. CONCLUSION

This paper presents development of indoor human

tracking application using 2 depth-cameras. Tracking

human’s location was conducted real time using

player segmentation data and skeletal tracking feature

on Kinect for Windows SDK v1. Stream data from

every Kinect was processed by client application and

distribute it to server application using Pipes

mechanism on Windows operating system.

The process of detection human location on

intersection of two coverage Kinects was conducted

by examine whether two Kinects sending skeletal

tracking data simultaneously or not. To calculate the

final location of detected human in intersection

coverage was done by calculating the middle point of

two location data from two Kinects. The final result

was visualized using Windows Presentation

Foundation 4.0 based on final calculation of human

location and position of 3D Kinect object. From the

experimental result, it’s shown that average error of

application in detecting human location is 0.13589

meters.

Indoor human tracking application that has been

developed in this research still has a lot of potential

improvement. Applications can be developed to detect

a lot of people at once and be able to visualize it

correctly for various placements of Kinect. For future

work, the results of this research can be further used

for development of a more advanced tracking system

or context-aware application.

REFERENCES

[1] N. B. Priyantha, “The cricket indoor location system”,

Doctoral Thesis, Departement of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology,

2005.

[2] R. Want, A. Hopper, V. Falcao, and J. Gibbons, “The active
badge location system”, ACM Transactions on Information

Systems, vol. 10, pp. 91-102, 1992.

[3] R. Bodor, B. Jackson, and N. Papanikolopoulos, “Vision-
based human tracking and activity recognition”, in Proc. Of

The 11th Mediterranean Conference on Control and

Automation, 2003.
[4] J. Choi, Y. Cho, K. Cho, S. Bae, and H. S. Yang, “A view-

based multiple objects tracking and human action recognition

for interactive virtual environments”, International Journal of
Virtual Reality (IJVR), pp. 71-76, 2008.

[5] M. D. Addlesee, A. H. Jones, F. Livesey, and F. S. Samaria,

“The ORL active floor”, IEEE Personal Communications,
5(4), pp. 35-41, 1997.

[6] S. Pirttikangas, J. Suutala, J. Riekki, and J. Roning, “Footstep

Identification from pressure signals using hidden markov

models”, Finnish Signal Processing Symposium (FINSIG’03),

2003.

[7] M. N. K. Boulos, B. J. Blanchard, C. Walker, J. Montero, A.
Tripathy, and R. G. Osuna, “Web GIS in Practice X: a

Microsoft Kinect Natural User Interface for Google Earth

Navigation”, International Journal of Health Geographics,
10:45, 2011.

[8] Microsoft Developer Network. (2012). Kinect for Windows

SDK [Online]. Available: http://msdn.microsoft.com/en-
us/library/hh855347.

[9] L. Xia, C.-C. Chen, and J.K. Aggarwal. (2011). “Human

Detection Using Depth Information by Kinect", International
Workshop on Human Activity Understanding from 3D Data in

conjunction with CVPR (HAU3D), Colorado Springs, CO.

[10] A. D. Wilson and H. Benko, “Combining multiple depth
cameras and projectors for interactions on, above, and

between surfaces”, UIST ’10 Proceedings of the 23nd annual

ACM symposium on user interface software and technology,
2010.

[11] A. Bogomjakov, Craig Gotsman, and Marcus Magnor, “Free-

viewpoint video from depth cameras”, Proc. Of Vision,
Modeling, and Visualization (VMV), pp. 89-96, November,

2006.

[12] K. Khoshelham and S. O. Elberink, “Accuracy and Resolution
of Kinect Depth Data for Indoor Mapping Applications”,

Sensors, 12, pp. 1437-1454, 2012.

